ar X iv : h ep - t h / 05 11 22 4 v 1 2 2 N ov 2 00 5 Stochastic Quantization of ( λφ 4 ) d Scalar Theory : Generalized Langevin Equation with Memory Kernel

نویسندگان

  • G. Menezes
  • N. F. Svaiter
چکیده

We review the method of stochastic quantization for a scalar field theory. We first give a brief survey for the case of self-interacting scalar fields, implementing the stochastic perturbation theory up to the one-loop level. The divergences therein are taken care of by employing the usual prescription of the stochastic regularization, introducing a colored random noise in the Einstein relations. We then extend this formalism to the case where we assume a Langevin equation with a memory kernel. We have shown that, if we also maintain the Einstein's relations with a colored noise, there is convergence to a non-regularized theory.

منابع مشابه

ar X iv : h ep - p h / 05 08 26 4 v 2 1 1 N ov 2 00 5 Scalar σ meson at finite temperature in nonlocal quark model

Properties and temperature behavior of π and σ bound states are studied in the framework of the nonlocal model with a separable interaction kernel based on the quark Dyson-Schwinger and the meson Bethe-Salpeter equations. Mπ(T ), fπ(T ), Mσ(T ) and Γσ→ππ(T ) are considered above and below the deconfinement and chiral restoration transitions.

متن کامل

ar X iv : h ep - t h / 05 11 25 0 v 1 2 4 N ov 2 00 5 Hawking Radiation as Tunneling : the D dimensional rotating case

The tunneling method for the Hawking radiation is revisited and applied to the D dimensional rotating case. Emphasis is given to covariance of results. Certain ambiguities afflicting the procedure are resolved. PACS numbers: 04.70.-s, 04.70.Dy

متن کامل

ar X iv : h ep - t h / 05 11 23 3 v 1 2 3 N ov 2 00 5 One - loop f ( R ) Gravitational Modified Models

The one-loop quantisation of a general class of modified gravity models around a classical de Sitter background is presented. Application to the stability of the models is addressed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005